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Abstract
Over the past two decades, quantum computing has become a popular and promising approach
to trying to solve computationally difficult problems. Missing in many descriptions of quantum
computing is just how probability enters into the process. Here, we discuss some simple
examples of how uncertainty and probability enter, and how this and the ideas of quantum
computing challenge our interpretations of quantum mechanics. It is found that this uncertainty
can lead to intrinsic decoherence, and this raises challenges for error correction.

1. Introduction

A new computing paradigm has appeared over the past
couple of decades—quantum computing. This concept
brings together ideas from information transmission, computer
science, quantum physics, and quantum electronics (including
optics) [1]. Quantum computing has become of interest due
to the suggestion that it provides a methodology by which very
rapid computations may be achieved with no dissipation [2]. In
general, the speed of these computations has been compared to
that of classical, sequential digital computers in which a single
processor is used. Indeed, the speed of quantum computing
has promised the prospect of factoring large integers into their
prime factors [3], a task that is known to be computationally
hard on classical computers. The primary difference between
the bits on a classical digital computer and the qubits of
a quantum computer is that the latter incorporate quantum
mechanical phase factors that allow a continuous range of
projection onto the ‘0’ and ‘1’ states. As such, the qubits
themselves should be thought of as analog objects. That is, the
state is a continuous (complex) variable, basically the phase
of the complex qubit, instead of merely a ‘0’ or a ‘1’. Yet,
a quantum computer, like a classical computer, is a set of
interconnected processing elements, but now the latter are a set
of qubits. The efficacy of the quantum computation scheme lies
in the ability to build in efficiencies through the use of quantum
entanglement [4].

The attraction of quantum computation has been strong,
and it originally grew out of the feeling that this was an
approach to reversible computation, where no energy would be
dissipated in the computing process [5]. Here, it was presumed
that qubit transitions from one gate to the next would follow
by the use of unitary transformations, as (textbook) quantum

mechanics was closed and dissipation free. In general, one can
easily do logical reversibility, but there is a difference between
logical reversibility and physical reversibility1 [6]. Even in
the case of logical reversibility, one must be concerned about
whether this is compatible with probabilistic flow through the
gates. That is, the flow of information through the qubit gates
in a quantum computer represents the evolution of a quantum
system. Quantum mechanics is a probabilistic theory [8], and
one has to worry about how this intrinsic probability affects
quantum computation.

To illustrate these points, consider the simple quantum
circuit in figure 1. This circuit depicts a portion of a quantum
computing circuit, in which a controlled φ-rotation gate and
a Hadamard transform gate are indicated to act upon three
qubits, denoted by the vectors on the left. In addition,
the instantaneous state of the system is indicated by the
wavefunctions along the bottom. In general, as in all such
discussions of quantum circuits, the process, or information,
flow is assumed to move from the left to the right. In these
circuits, then, the quantum evolution in some sense has a
trajectory2 that moves from the left to the right, and for which
the coherence of the wavefunction is assumed to be maintained
throughout the computation. Then, it must be assumed that a
preferred arrow of time has been imposed upon the system, and

1 Originally, Landauer [7] showed that erasing information meant physical
irreversibility, but the converse is not true. Avoiding the erasure of information
does not imply physical reversibility. In fact, the prototypical (logically
reversible) quantum gate, the Toffoli gate, can easily be implemented with
traditional (dissipative) CMOS gates. In essence, logical reversibility is
necessary, but not sufficient for a reversible computer.
2 While Dirac [9] discussed trajectories for quantum mechanics, his concept
involved projection onto a sequence of eigenvalues. This will reappear later in
the discussion.
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Figure 1. Part of a quantum computing circuit. The instantaneous
state of the system is indicated by the wavefunction at the bottom and
the particular qubit is denoted by the left-hand kets.

this reflects upon the reversibility of the system, as such time
asymmetry is usually coupled to dissipation.

Of more interest for our current purpose, one must ask
how these circuits are affected by uncertainty and probabilistic
behavior. For example, if we assume that the indicators along
the bottom of the circuit in figure 1 correspond to a spatial
progress of the information, then the unitary operation leads
to a change of phase of the qubits as one moves through the
circuit. But, this is a spatial change of the phase, the latter
of which incorporates the velocity or momentum of the qubit’s
wavefunction. This quantity does not commute with the spatial
position assumed in the circuit, and the resulting uncertainty
clearly affects the results of the indicated operations3. Born [8]
provided the probabilistic view for quantum mechanics, in
which the expectation value of an operator is an average over
a great many ‘trials’ of the evolution of this wavefunction,
in essence expressing the need for an ensemble averaging
process. Yet, the quantum circuit is thought of as being the
single processing entity. But, the statistical errors in this
approach may well be such that the gate operation will lead
to conditions which are not plausible and the circuit cannot be
implemented [10]. It is this point that we want to examine, and
shall do this with some very simple examples which effectively
illustrate the nature of the problem.

Having posed the problem, some caveats must be faced.
Estimating intrinsic errors from uncertainty relations, which
is the approach suggested, is known to give very small
numbers [11]. Nevertheless, this gives a break with fully
reversible behavior and is still important. We will return to
the ensemble idea later.

In the following sections, we first discuss some simple
qubit operations corresponding to the quantum circuit of
figure 1, and assess the role of probability there. We then
turn to the point that quantum computing challenges our
common interpretation of quantum mechanics, so that we have
to examine other interpretations to obtain a clear picture of
what is really happening. Finally, we discuss how this may
affect schemes which are designed to overcome error through
qubit encoding.

2. Qubits and probability

The question is about how probability affects the qubits that
arise in quantum computing, such as those in figure 1. In this

3 The use of position and momentum here is arbitrary, as most qubit
operations will entail non-commuting operators at some point. Thus, those
chosen here can be taken as generalized operator pairs.

figure, we have two gates. The question is how probability
will enter the framework of this quantum circuit. Do we assign
a probability p that the qubit is in state |1〉 and a probability
q = 1 − p that the state is in state |0〉, or do we assign a
probability p that the quantum evolution to the right occurs and
a probability q that it does not occur? These are very simple
questions, but get right to the heart of the role of probability in
quantum computing.

2.1. The controlled phase gate

In the first scenario, we consider the controlled phase gate in
figure 1. Here, the state of the two qubits are taken to have
the space

| j + 2, j〉 → {|00〉, |01〉, |10〉, |11〉}, (1)

and the qubit transition matrix reads

S =
⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

⎤
⎥⎦ . (2)

That is, when the j + 2 qubit is in the 1 state, a phase
is applied to the 1 state of the j qubit. This is a unitary
matrix representing the unitary transformation applied to the
wavefunction. In general, if we have a combination of states in
the j + 2 qubit, we get, for example,

(α|0〉 + β|1〉) j+2|0〉 j → α|00〉 + β|10〉,
(α|0〉 + β|1〉) j+2|1〉 j → α|01〉 + βeiϕ|11〉.

(3)

Here, |α|2 + |β|2 = 1. These two quantities tell us the fraction
of each initial state that is present, presumably from a previous
gate, but they cannot be put into the transition matrix (2).
Otherwise, this would break the unitarity of this matrix. The
presence of an error in the input state, say the probability of a
different combination, will change the α and β . For example,
if these two were reversed in position, the phase of the qubit
would change its sign. Without loss of generality, we may
rewrite the input combination as

α = 1√
2
, β = 1√

2
eiϑ . (4)

A very simple model for an error might then be to use

α′ = pα + qβ = p + qeiϑ

√
2

,

β ′ = pβ + qα = q + peiϑ

√
2

.

(5)

Here, p + q = 1. If α′ and β ′ remain normalized, then
we would only have an error propagation. But, we cannot
guarantee this is the situation. In fact, the inner product
results in

p2 + q2 + 2pq cos(ϑ), (6)

which only retains normalization for one value of the angle
(ϑ = 2nπ ). Had we chosen p2 + q2 = 1, the normalization
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problem would not have gone away, although the angles at
which it remains would be shifted. Even if the combination
remains normalized, so the signal will propagate properly to
the output of the gate, the error will also propagate through
the gate. Thus, the error does not remain localized to this
particular gate.

In a classical gate, small errors are reset to 0 or 1 by
the nonlinearity in the gate function itself. The level that
constitutes ‘small’ is defined by the noise margin in this
nonlinear switching function. But, the quantum gates are
linear, so that there is no natural reset process, and the errors
will propagate through the gate and the remaining gates of
the system.

Here, we have not addressed the problem of whether or
not the unitary transition matrix (2) is completely applied
in the process, as mentioned above. We leave this to the
following discussion.

2.2. The Hadamard gate

Similarly, in the second scenario above, we will use the
Hadamard gate as an illustration. In figure 1, the Hadamard
transformation is applied to qubit j + 1. This transformation
has the form

H = 1√
2

[
1 1
1 −1

]
. (7)

This is a unitary transformation. The issue here is the time
at which the transformation is ‘complete’. As we mentioned,
the phase incorporates the conjugate variable, such as the
momentum. Hence, the uncertainty relation suggests that an
uncertain momentum means an uncertain time at which the
transform is complete. The possibility of this range of times
is discussed more below. Here, for the probabilistic situation,
we will again use a very simple model. We assume that
the unitary transformation occurs with probability p, so that
the Hadamard matrix is multiplied by p and an I2 matrix,
which represents no operation occurring, is multiplied by
q . When these are added, the net matrix is also no longer
unitary. This will be detailed further in the discussion below,
where we find both an amplitude and a phase error. For the
present, we are led to the conclusion, that probability does not
seem compatible with the unitary transitions envisioned for the
individual qubits. How do we reconcile this with the idea of
the quantum computing circuit?

3. Are quantum circuits reasonable?

We mentioned that a preferred arrow of time had been
introduced in figure 1, in the assumption that the information
(or processing) flow was from the left of the figure to the right
of the figure. The presence of this arrow of time in computation
is considered to imply that the system is in a non-equilibrium
state [12]. Generally, this implies dissipation and decoherence
in the system, a recognition reflected in DiVincenzo’s call
for long decoherence times in quantum computing [13].
But, the ‘information flow’ in figure 1 raises new questions
with quantum mechanics itself, as this is an introduction
of causality or determinism, which is incompatible with the

normal interpretation of quantum mechanics4. Yet, here we
have a quantum computational process that seems to require
just what is not supposed to be present. Thus, we must either
give up our quantum circuit or find an alternative interpretation
of quantum mechanics.

A further question is how does the consideration
of probability within the gate square with the common
(Copenhagen) interpretation of quantum mechanics, in which
measurements tend to introduce probabilities. That is, the
statistical behavior lies only in the classical world. Now, is
this a problem with quantum computing, or a problem with the
common interpretation of quantum mechanics? Since the very
advent of quantum mechanics, there have been arguments over
whether or not it was a complete theory [16]. These arguments
have continued to this day. Indeed, Ghose [17] summarizes
a number of situations in which the common interpretation
seems inadequate. Here, we seem to require an interpretation
of quantum mechanics which admits to a causal, deterministic
flow. One such interpretation is that of de Broglie [18] and
Bohm [19] (dBB). Another is the consistent histories approach
of Griffiths [20]. We discuss this latter first.

3.1. Consistent histories

In common quantum mechanics, wavefunction collapse is
considered the byproduct of measurements. In contrast,
wavefunction collapse in the consistent histories approach
is a mathematical procedure for calculating conditional
probabilities within the quantum evolution [21]. Probabilities
are introduced as part of the axiomatic foundations of quantum
theory, irrespective of measurements. We can think of a history
as a sequence of alternatives at a specific set of times [22].
These alternatives may be simple yes/no statements, but open
the door for probabilities at each state. Thus, the states |ψk〉 in
figure 1 may each be characterized by a ‘probability’ Pk for the
possible states. In the strictest interpretation, this probability is
a projection operator which takes the entire Hilbert space to
the allowed set of states [23], and so a trajectory in the spirit of
Dirac [9] is introduced. By nature, these projection operators
compress the phase space and introduce decoherence, which
is why the consistent histories approach is often called the
decoherence approach. But, now questions about time and
determinism become almost irrelevant.

In moving from one state to the next in figure 1, it may
be assumed that there is a time ordering in the states, with
· · · tk < tk+1 < tk+2 · · ·, etc. In turn, the system evolves via
the Hamiltonian, and a particular history can be written as [24]

H = (· · · Pj+2 Pj+1 Pj · · ·), (8)

where Pi is the probability that proposition i is true at ti . In
the Hilbert space, we then have to introduce projections onto
the desired space, and propagators from one state to the next,

4 Bohr asserted that quantum mechanics ‘. . . implies a renunciation as regards
the causal space-time coordination . . .’ [14]. Born is more explicit in this
regard, stating that ‘. . . in the quantum theory it is the principle of causality, or
more accurately that of determinism, which must be dropped . . .’ [15].
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which leads to

H = [· · · P̂k+1U(tk+1, tk)P̂k · · ·], (9)

where
U(t2, t1) = e−iH (t2−t1)/h̄ (10)

for a time independent Hamiltonian.
Herein lies the problem discussed above. The last equation

assumes that we can define a specific time to each of the
states along the bottom of figure 1. But, as we pointed out
previously, if we take these states as being spatially located in
the quantum circuit (one possibility), then the operator (10)
contains the momentum in the phase exponent and thereby
suffers from the uncertainty relation. That is, the position and
momentum do not commute, and the resulting uncertainty in
momentum makes the time at which the ‘trajectory’, from state
|ψk〉 to |ψk+1〉, actually arrive at this latter state uncertain. The
result is that we cannot be sure that the operation has been
completed at the designated time t2 assigned to this latter state.
This is the heart of the quantum error that is introduced in
the Hamiltonian, as discussed in section 2.2 for the Hadamard
gate. At the end of the process, the projection operator, or the
probability it represents, picks out that fraction of states for
which the Hadamard gate operation would have been effective.
Hence, our probability that the operation was actually applied
is transformed into the projection operation onto the set of
states that would result from the Hadamard operation being
successful.

We can demonstrate this for the Hadamard gate. For
simplicity, we assume that the basis set at |ψk+1〉 is {|0〉, |1〉},
and then the desired Hilbert space after the Hadamard gate is

|ψ j+2〉 =
[ 1√

2
(|0〉 + |1〉)

1√
2
(|0〉 − |1〉)

]
≡

[
u0

u1

]
. (11)

In fact, with the uncertain transform pH+qI2, the transformed
state is given by

|ψ j+2〉′ =
[
(q + p√

2
)u0 + p√

2
u1

(q − p√
2
)u1 + p√

2
u0

]
. (12)

There are two important points to be made here. First, the
amplitude is changed for each of the two states, and becomes

1 − (2 ∓ √
2)p(1 − p) � 1. (13)

The non-unitarity results in reduction of the amplitude of
the state, which of course introduces an error in the qubit.
Secondly, however, the amplitude reduction differs for the
two states, and this introduces a phase error in the qubit.
This phase error is a different form of quantum error, which
would not be encountered in classical bits. While much effort
has been expended in discussing extrinsic decoherence arising
from interactions with the environment, this is an intrinsic
decoherence which has not been well discussed. We also note
that the resulting probability that enters (12) for Pj+2 is just p,
as we might have suspected.

A final important point is that the errors are now moved to
the possible values of the state, |ψk+2〉 in this case. Assigning

a probability to the possible values of a qubit is just the
assumption that we followed in the controlled phase gate of
section 3.1. What we find is that the two possible sources of
error described in section 3 seem to merge to the same resulting
definition for error in the state, and this error occurs in both
the amplitude and phase of the qubit. While the model may
be quite simple, the important result is that the errors, both
amplitude decay and dephasing, build upon one another and
propagate through the gates.

3.2. The de Broglie–Bohm approach

The dBB theory arises through the introduction of pilot waves
with trajectories, but is often thought of as a wave and particle
theory. The key factor here is that it admits to a causal
flow with probabilities (and uncertainty) confined to the initial
conditions [25]. In general, the wavefunction is expanded into
an amplitude and a phase S, and this then gives a deterministic
equation for the general coordinate

mi
dxi

dt
= ∂S

∂xi
. (14)

This approach becomes a statistical theory with the
assumptions that the initial values of the various xi are
distributed probabilistically according to some function on the
configuration space of the system5.

Here, one might even consider entanglement as a
hidden variable. Entanglement is fundamental to quantum
mechanics [29], and is the process by which quantum
computing gains its power to process information with
exponentially fewer resources than classical computing [30].
Yet, observation of the entangled state depends upon a very
special tensor-product Hilbert space, whereas normally the
expectation value of an operator is independent of the choice of
basis set. This suggests that there is no operator which yields
an expectation value that is a measure of entanglement [31, 32].
What remains then is to consider entanglement as a hidden
variable. Quantum computing appears to be a natural scenario
for invoking the dBB interpretation of quantum mechanics.

The problem with this view lies in the fact that the
probability in dBB is restricted to the initial condition, and the
resulting trajectories are deterministic. But, which trajectories?
Leavens has pointed out that the initial distribution gives rise
to a set of possible trajectories, and this in turn leads to an
arrival time distribution [33]. This distribution corresponds
to the uncertainty issue discussed above. Truncating at a
finite time leads to error. In essence, this puts us in the
same quandary as finding the value of (10) at the defined time
of a particular state, as discussed above. If we are to use
the dBB theory, then we have to think of discrete quantum
propagations, in which each gate starts with an initial state with
its own probability distribution. In this sense, the quantum
circuit becomes quite meaningful, as each stage is a separate

5 One objection to the dBB theory is that it is generally considered to be a
‘hidden variable’ theory, a situation which is thought to have been ruled out by
the work of Bell [26]. However, Bell’s theorem only applies to ‘local’ hidden
variables, and has come into question itself recently [27], while the second is
that Bell himself was a fan of the dBB theory [28].

4
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propagation. At the same time, this begins to connect to the
consistent histories approach6.

There are other interpretations of quantum mechanics
which also could be employed as well. There is the well-
known ‘many worlds’ interpretation of Everitt [35]. Bell felt
that this was basically a version of the dBB theory without
trajectories [28], while Ghose viewed it as failing some tests, in
that ‘. . . there is a conceptual proliferation of unrelated worlds
at every observation’ [17]. Thus, it seems that the two previous
interpretations may well be the most useful for discussing the
basis and application of quantum computing in a manner that
allows the probability to occur.

4. Discussion

To summarize the above discussion, it is clear that the
unitary transformations that describe the quantum gate contain
a momentum operator, which from the uncertainty relation
introduces a variation of the time at which the operation
is complete. For example, the unitary transformation can
be expressed by a Green’s function that operates on the
wavefunction, and this in turn can be expressed as a Feynman
path integral [36]. The latter is a summation over all possible
paths, or trajectories (such as those which occur in the dBB
theory). These trajectories have a distribution of arrival
times [33], so that any truncation at a finite time incurs an error
in the Green’s function/unitary transformation. This error has
both an amplitude and phase component, and propagates from
one state to the next, providing correlated error through the
quantum circuit. Thus, there are intrinsic, internal errors within
quantum gates.

To overcome general errors, it was suggested to use error
correcting codes for quantum computing [37], and a great
deal of effort has been addressed to this point. In fact, the
basic premises upon which the use of error correction codes is
based may have to be reconsidered. In general, it is assumed
that such codes make it possible to correct for some of the
qubits being corrupted in an unknown way [38]. First, it
is assumed that the original qubits can be encoded by the
application of a unitary transformation at the beginning [39].
But, the unitary transformation itself may introduce errors, as
discussed above. How do we separate the quantum totality
into an encoding part and a processing part? Even after the
encoding, it is usually assumed that only a fraction of the
qubits are affected by the decoherence, and that these errors
are introduced independently of each other [37]. In fact, this
means that the system may be fault tolerant if the errors do

6 To be sure, there have been suggestions that these two approaches are
inconsistent with one another, but Hartle has clarified the two approaches
and where they differ [34]. The dBB theory allows for interference, but the
consistent histories assumes that these interferences have disappeared due to
decoherence. In this sense, consistent histories incorporates the Kolmogorov
probability definitions, which do not admit the negative probabilities. If we
ignore these interferences at the individual state level of the quantum circuits,
such as figure 1, then there is little difference in the two approaches. It is
important to note that this interference is not the same as entanglement. Rather,
this interference arises from coherence between the initial state and the final
state of each stage of the circuit, and can lead to e.g. phase errors due to
circuit ‘resonances’.

not propagate from one block to the next [40]. But, the results
above suggest the opposite—the intrinsic errors propagate.

Kak [41] argues that the error correction concept is largely
based upon concepts arising from classical computing, and that
certain errors in qubits cannot be corrected. An example might
be the case discussed above for the Hadamard gate. While
a general loss of amplitude, due to decoherence, might be
correctable, the fact that this loss is different for the two states
of the qubit is problematic. It is not clear that the resulting
phase error can be effectively corrected.

There is also the suggestion for the use of so-called
decoherence free subspaces which decouple the qubit from its
environment [42]. While we have shown there are errors that
arise merely from the operation of the qubit transformation and
are not environment-induced errors, it is not clear whether the
decoherence free subspace will be as effective in this situation.
Yet, at least one plan has been suggested for actually using
weak interaction with the environment to stabilize qubits in
the decoherence free subspace [43], an approach which clearly
moves away from totally reversible computing.

We should return to the idea of ensembles, since one idea
is to compute until we get it right, which has been suggested
for single photon computing [44]. Also, the suggested cluster
states, composed of large numbers of qubits, might also
represent a meaningful ensemble approach [45]. These present
different approaches, in which it is not immediately clear how
the simple ideas presented here apply.

In summary, we have shown that probability within
the computational steps is a source of intrinsic decoherence
within the computational set of gates. Moreover, the
lack of probability and the apparent causal, deterministic
flow in quantum computing circuits drives us to consider
alternative descriptions of quantum mechanics. It appears
that this deterministic behavior in quantum circuits can be
reconciled with quantum mechanics in a number of different
interpretations, such as consistent histories and the dBB
interpretation. As a result, it may be that quantum computing
gives us new insight into the basics of quantum mechanics and
constraints on any completeness in the theory.
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